more value more car

Usage of Simulation in Development Process

more value more car

Questions?

Joint simulation - our strategy

- CFD people are looking critical to 1-dimensional tools
- 1D people point out the flexibility and speed

- KULI and CFD tools play together
- Use both benefits to get more efficiency in development
- Check plausibility (i.e. CFD massflow)
- Direct interface and data exchange
- Vision of YIN and YANG
- Next step is "said and done"

KULI ADVANCED

• Interface KULI-CFD Data: FLUENT, STAR CD, FIRE

more value•more car

MAGNA STEYR ENGINEERING

Data Exchange

					inport 👔				_ 🗆 ×
File Macro User 1						Import CFD data to KULI:			
define variab	les								
adiator cset by clicking radiator cset by type					CFD File	D:\entwickl\kulin_0\cfdDaten\ExCFD-2.prof			
define radiator csys use predefined rad. csys					KULI CFD data file	D:\entwickl\kulin_0\cfdDaten\ExCFD-2.cfd			
cset of 1 laye	ər 🛛								
oad & refram	ne & write registers				CFD data field	Hea	Ider for KULI CFD data f	le	
itton Name	fine variables		Field coordinates	Comment Example					
						Width [mm]			
Define necessary adjustable variables here						- Heid	r [mm]	450	<u> </u>
(local coordinate system, radiator Cell type).					Field properties	Denth	n [mm]	40	
This button should be the first one the user activates to make sure the correct values are set.					(x-velocity	- Surro	unding pressure [hPa]	1013,	
! ! **NATE the coordinate system conventions used in KIII !!						Surro	unding temperature [*C	20,	
! (the local y and z axis span the horizontal and vertical ! ! main directions of the radiator, ! flow through the radiator is in x-direction)						Relative moisture [%] 50,			
						Unito	oordinates	m	•
Define the local	radiator coordinate syst	======================================							
(required; option	nally re-specified in the f	ollowing)							
Ser CS_120							Write KULI	le	
Define the radia (optional)	ator cell type					in			
set rctp 13			v						
						[[CFD_D	ATA]		
						COMMEN	IT_USERCOMME	NTS	= 'Example'
291330	-9 46665955	395 600037	2 99506330				IT_COMPONENT		= Radiator = 800
291336	-4 73332214	391 000000	3 02757287			COMMEN	IT_HEIGHT		= 450
291342	-9 46665955	381 800049	2 97484159			COMMEN	NT_DEPTH	DE	= 20
291348	-4 73332214	377 200012	3 02046227			SURROU	NDING TEMPER		= 1013
291340	-9 46665955	368 000000	3 09280634			RELATIV	E_MOISTURE		= 50
291360	-4 73332214	363 400024	3 21569037						= 'm'
291366	-9.46665055	354 200012	3 31120872			SURFIT	SMOOTHING FK	T	
291300	-9.40003933	3/0 600006	3 16181170			{Y	Z	V}	÷
271372	0 46665055	349.000000	2 68520577			0.0000	0.2193	2.8659	
291378	-9.40003933	225 700024	2 00677022			0.0196 0.0391	0.2192	2.8977	
291384	-4./3332214	555.199988	5.90077025				J.Z I JZ	2.3040	
						0.0750	-0.0196	3.3092	

Farm Tractor Installation

Analysis Models

MAGNA STEYR E N G I N E E R I N G

Axes Offset Variants

3rd KULI User Meeting October 2001

MAGNA STEYR E N G I N E E R I N G

Simulation Results incl. Heat Transfer

Influence on Cooling System Performance

Mass flow: cold-warm

Temperature: 1D - 1D/3D model

Purpose and Targets

Prototype fully capsulated High performance 380 PS

- Increase A.C.T.
- **O.T.D. Intercooler decrease**
- Reduce Engine Room Temperature hot spots (-15K)

MAGNA STEYR ENGINEERING

Engine Room Temperature Level

Actual Configuration 1.92 kg/s

100 °C air after fan

Target Configuration 2.35 kg/s

89 °C air after fan

Engine Room Model Flow Patterns

CFD Investigations STAR CD at ECS 577.000 Cells

17 Variations

Engine Room

Variation Boundary Conditions

Closed Baffle

Open Baffle

Proposals

- HOW to insert baffle for guiding air flow (maintenance attention)
- WHERE to open back or side (noise attention)