KULI-CFD

A New Approach

Combined Simulations

Rudolf Reitbauer

Usage of Simulation in Development Process

Questions ?

Influences on cooling performance

- Different temperature gradients ETD
- Uneven Airflow

- Mass flow cold/warm

Joint simulation - our strategy

- CFD people are looking critical to 1-dimensional tools
- 1D people point out the flexibility and speed
- KULI and CFD tools play together
- Use both benefits to get more efficiency in development
- Check plausibility (i.e. CFD massflow)
- Direct interface and data exchange
- Vision of YIN and YANG
- Next step is "said and done"

KULI ADVANCED

- Interface KULI-CFD Data: FLUENT, STAR CD, FIRE

Data Exchange

File Macro User 1			
define variables			
radiator cset by clicking		radiator cset by type	
define radiator csys		use predefined rad. csys	
cset of 1 layer			
load \& reframe \& write registers			
Button Name ${ }_{\text {Q Definition: }}$ define variables			
! Define necessary adjustable variables here ! (local coordinate system, radiator cell type). ! This button should be the first one the user activates ! to make sure the correct values are set. ! NOTE the coordinate system conventions used in KULI! (the local y and z axis span the horizontal and vertical main directions of the radiator, flow through the radiator is in x-direction)			
! Define the local radiator coordinate system ! (required; optionally re-specified in the following) *set cs_120 ! Define the radiator cell type ! (optional) *set rctp 13			
291330	-9.46665955	395.600037	2.99506330
291336	-4.73332214	391.000000	3.02757287
291342	-9.46665955	381.800049	2.97484159
291348	-4.73332214	377.200012	3.02046227
291354	-9.46665955	368.000000	3.09280634
291360	-4.73332214	363.400024	3.21569037
291366	-9.46665955	354.200012	3.31120872
291372	-4.73332214	349.600006	3.46484470
291378	-9.46665955	340.400024	3.68539572
291384	-4.73332214	335.799988	3.90677023

Farm Tractor Installation

1. Step
 3D-CFD Model inc. fan, porosity \downarrow

Cold Flow Velocity Distribution
2. Step

KULI Model inc. heat transfer \downarrow

Radiator Temperature Distribution Hot Air Properties
Influence on Cooling Performance

Analysis Models

STAR-CD Mesh

KULI Model

Axes Offset Variants

KULI_90_cold_vel

Simulation Results incl. Heat Transfer

Influence on Cooling System Performance

Mass flow: cold-warm

Temperature: 1D-1D/3D model

Purpose and Targets

Prototype fully capsulated High performance 380 PS

- Increase A.C.T.
- O.T.D. Intercooler decrease
- Reduce Engine Room Temperature hot spots (-15K)

Engine Room Temperature Level

Actual Configuration 1.92 kg/s

$100{ }^{\circ} \mathrm{C}$ air after fan

Target Configuration 2.35 kg/s
$89^{\circ} \mathrm{C}$ air after fan

Engine Room Model Flow Patterns

CFD Investigations

STAR CD at ECS
577.000 Cells

17 Variations

Engine Room

Variation Boundary Conditions

Engine Room Velocity Flow Patterns

Actual Configuration

$E N G I N E E R$ I $N G$

Engine Room Velocity Flow Patterns

Closed Baffle

Engine Room Velocity Flow Patterns

Open Baffle

Engine Room Velocity Flow Patterns

Lamp Area Open, Side Open

$E N G|N E E R| N G$

Proposals

- HOW to insert baffle for guiding air flow
(maintenance attention)
- WHERE to open back or side
(noise attention)

